比较好的理解是,数据可视化包含信息可视化。信息可视化是数据可视化的一个研究分支。可视化是普适性的,而信息图是具体的。可视化是不因为内容而改变的,而信息图则和内容本身有着紧密的联系。于是乎,数据可视化被划分了三个分支,分别是科学可视化,南京城市数据可视化,信息可视化,南京城市数据可视化,可视分析学,南京城市数据可视化。这种分类也被诸多人士所认可,恰好对应着三个国际会议:IEEEconferenceonscientificvisualization(SciVis),IEEEconferenceonInformationvisualization(infoVis),IEEEconferenceonvisualanalyticsscienceandtechnology(VAST).数据可视化用官方的定义来说就是关于数据视觉表现形式的科学技术研究。南京城市数据可视化
可视化元素由3部分组成:数据可视化空间+标记+视觉通道可视化空间数据可视化的显示空间,通常是二维。三维物体的可视化,通过图形绘制技术,解决了在二维平面显示的问题,如3D环形图、3D地图等。标记标记,是数据属性到可视化几何图形元素的映射,用来数据属性的归类。根据空间自由度的差别,标记可以分为点、线、面、体,分别具有零自由度、一维、二维、三维自由度。如我们常见的散点图、折线图、矩形树图、三维柱状图,分别采用了点、线、面、体这四种不同类型的标记。南京城市数据可视化数据可视化通常怎么做?
大数据可视化的一个好处是,它允许用户去跟踪运营和整体业务性能之间的连接。在竞争环境中,找到业务功能和市场性能之间的相关性是至关重要的。例如,一家软件公司的执行销售总监可能会立即在条形图中看到,他们的旗舰产品在西南地区的销售额下降了8%。然后,主管可以深入了解这些差异发生在哪里,并开始制定计划。通过这种方式,数据可视化可以让管理人员立即发现问题并采取行动。向高级管理人员提交的许多业务报告都是规范化的文档,这些文档经常被静态表格和各种图表类型所夸大。也正是因为它制作的太过于详细了,以致于那些高管人员也没办法记住这些内容,因此对于他们来说是不需要看到太详细的信息。然而,来自大数据可视化工具统计的报告使我们能够用一些简短的图形就能体现那些复杂信息,甚至单个图形也能做到。决策者可以通过交互元素以及类似于热图、fevercharts等新的可视化工具,轻松地解释各种不同的数据源。丰富但有意义的图形有助于让忙碌的主管和业务伙伴了解问题和未决的计划。
数据可视化的第二个优点就是用建设性方式讨论结果。一般来说,当我们向高级管理人员提交的许多业务报告的时候,都是规范化的文档,这些文档经常被静态表格和各种图表类型所夸大。也正是因为它制作的太过于详细了,以致于那些高管人员也没办法记住这些内容,因此对于他们来说是不需要看到太详细的信息。而使用Smartbi大数据可视化工具就可以使我们能够用一些简短的图形就能体现那些复杂信息,甚至单个图形也能做到。决策者可以通过交互元素,轻松地解释各种不同的数据源。丰富但有意义的图形有助于让忙碌的主管和业务伙伴了解问题和未决的计划。数据可视化一般用于什么途径?
论是哪种职业和应用场景,数据可视化都有一个共同的目的,那就是准确而高效、精简而地传递信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,能将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现其规律和特征,获得更有商业价值的洞见和价值,并且利用合适的图表直截了当,且清晰而直观地表达出来,实现数据自我解释、让数据说话的目的。而人类右脑记忆图像的速度比左脑记忆抽象的文字快100万倍。因此,数据可视化能够加深和强化受众对于数据的理解和记忆。数据可视化的优点是什么?南京数据可视化信息
好的数据可视化作品可以高效、精细地传达信息。南京城市数据可视化
二者之间有很重要的区别:探索性分析指理解数据并找出值得分析或分享给他人的精华。这就好比,在牡蛎中寻找珍珠,可能打开一百个牡蛎(尝试很多种方法)才终找到两颗珍珠。而解释性分析,我们迫切希望能够言之有物,讲好某个故事--专注于两颗珍珠。大多数时候我们汇报工作就是要做好解释性分析的工作。可视化过程一个完整的数据可视化过程,主要包括以下4个步骤:确定数据可视化的主题提炼可视化主题的数据根据数据关系确定图表进行可视化布局及设计南京城市数据可视化
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。